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Abstract. A generalized two-mode harmonic oscillator model is investigated within the framework of
its general dynamical algebra so(3, 2). Two types of eigenstates, formulated as extended su(1, 1), su(2)
squeezed number states are found respectively. The nonadiabatic Berry’s phase for this system with the
cranked time-dependent Hamiltonian is also given.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quan-
tum state engineering and measurements – 03.65.Fd Algebraic methods – 03.65.Vf Phases: geometric;
dynamic or topological

1 Introduction

Generalized harmonic oscillators are widely used in de-
scribing many physical systems, such as generalized coher-
ent states in quantum optics [1], dissipative systems [2],
molecular vibrations [3], and so on. Among these models,
the two-mode case captures the essential physics, and has
been extensively studied in the past several decades [4]. As
originally pointed out by Dirac, the full dynamical algebra
of these systems are so(3, 2) [5]. To date, various studies
of these systems have been performed for particular cases
with a range of physical purposes and applications. In the
process of analytical calculation, one usually has to avoid
the simultaneous appearance of the three kinds of inter-
actions a2

i , a1a2, a
†
1a2, and some approximate methods

such as the rotating-wave approximation are applied. In
other words, previous studies have dealt with the sub-
algebras so(2, 1) ≈ su(1, 1) and so(3) ≈ su(1, 1) rather
than the full dynamical algebra so(3, 2). Therefore, the
intrinsic properties of interaction and entanglement be-
tween the different modes of the two-mode systems can-
not be sufficiently well described. On the other hand, since
generalized two-mode harmonic oscillator are a general de-
scription of two-mode quantum systems with various lin-
ear interactions, it is practically useful to find the more
general exact solutions. In this work, we deal with the
time-independent generalized two-mode harmonic oscilla-
tors analytically within the so(3, 2) framework. In Sec-
tion 2, two types of eigenstates formulated as extended
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su(1, 1) and su(2) squeezed number states [6] are found.
In Section 3, we give some statistical properties of these
states. The nonadiabatic Berry’s phase of time-dependent
system with cranked Hamiltonian is discussed in Section 4.
Finally, we make some concluding remarks.

2 Diagonalization and squeezed number state
solutions

The generalized two-mode oscillators can also be called
generalized 2-dimensional oscillators, taking account of all
possible linear interactions in the 4-dimension x-p phase
space. The time-independent Hamiltonian of these sys-
tems is given by [7]

H =
∑

i=1,2

[
p2
i

2m
+
ωi
2
ui(xipi + pixi) +

ω2
i

2
mx2

i

]
+ s

p1p2

2m

+
√
ω1ω2 (ux1p2 + u′x2p1) +

ω1ω2

2
mvx1x2 (1)

where s, u, u′, v, ωi, ui are real parameters. This Hamil-
tonian is worth studying in fundamental quantum me-
chanics. The introduction of the bosonic operators ai =
(mωixi + ipi)/

√
2mωi, allow us to rewrite it in the

quadratic form

H =
∑

i=1,2

[
2zi

(
a†iai +

1
2

)
+ xi+2a

2
i + x∗

i+2a
†
i

2
]

+ 2x1a1a2 + 2x∗
1a

†
1a

†
2 + 2x2a

†
1a2 + 2x∗

2a1a
†
2 (2)
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with

2x1 =
√
ω1ω2

4
(v − s) − i

2
(ω2u+ ω1u

′),

2x2 =
√
ω1ω2

4
(v + s) +

i

2
(ω2u− ω1u

′),

xi+2 = − iωi
2
ui, zi =

ωi
2
. (3)

This new quadratic representation, in which the main role
is played by the canonical operators a1, a

†
1, a2, a

†
2, clarifies

the interpretation of the system as describing the normal
modes of the quantized electromagnetic field. This is the
main reason why the general Hamiltonian (2) is widely
used in quantum optics [1]. For convenience, we define
x = xeiϕx hereafter.

The Hamiltonian (2) processes so(3, 2) dynamical
structure and can be rewritten as

H = z1H1+z2H2+(x1E+1+x2E+2+x3E+3+x4E+4+h.c.)
(4)

in terms of the so(3, 2) generators which are represented
in the form

E+1 =
1√
2
a†1a

†
2, E−1 =

1√
2
a1a2,

H1 =
1
2

(
a†1a1 + a†2a2 + 1

)
,

E+2 =
1√
2
a1a

†
2, E−2 =

1√
2
a†1a2,

H2 =
1
2

(
a†2a2 − a†1a1

)
,

E+3 =
1
2
a†1

2
, E−3 =

1
2
a1

2,

E+4 =
1
2
a†2

2
, E−4 =

1
2
a2

2, (5)

and satisfy the Cartan-Weyl commutation relations

[Hi, Hj ] = 0, i, j = 1, 2,

[Hi, Eα] = αiEα, α = ±(1, 2, 3, 4),

[Eα, E−α] = αiHi,

[Eα, Eβ ] = Nα,βEα+β , α+ β �= 0. (6)

One can see that {H2, E±2} forms a so(3) ≈ su(2) subal-
gebra, while {H1, E±1}, {E±3, H1 −H2 − 1

2}, {E±4, H1 +
H2 − 1

2} construct so(2, 1) ≈ su(1, 1) subalgebras respec-
tively. The larger subalgebras of so(3, 2) include so(2, 1)⊕
so(2) ≈ su(1, 1) ⊕ u(1), so(3) ⊕ so(2) ≈ su(2) ⊕ u(1),
so(2, 1)⊕ so(2, 1) ≈ su(1, 1) ⊕ su(1, 1) [7]. In previous lit-
erature, the exact solutions are actually obtained under
these subalgebras.

We introduce an operator W (ξ) expressed as

WH1(ξ) =

exp
{
reiψ

[
cos θa†1a

†
2 + sin θ

(
e−iφa†2

2 − eiφa†1
2
)]

− h.c.
}
.

(7)

It can be called extended su(1, 1) squeezing operator
which can reduce to the su(1, 1) and su(1, 1) ⊕ su(1, 1)
case when θ is chosen to be zero and ±π/2 respectively.
This unitary operator provides a new two-mode squeezing
transformation,

b1H1 = W †
H1

(ξ)a1W (ξ)H1

= a1 cosh r + eiψ
[
cos θa†2 − eiφ sin θa†1

]
sinh r, (8)

b2H1 = W †
H1

(ξ)a2W (ξ)H1

= a2 cosh r + eiψ
[
cos θa†1 + e−iφ sin θa†2

]
sinh r, (9)

where biH1 and b†iH1
are new bosonic operators.

The eigenstates of Hamiltonian (4) can take the form

D(γ)WH1(ξ)|ref〉, (10)

where

D(γ) = exp
(
γ1a

†
1 + γ2a

†
2 − γ∗1a1 − γ∗2a2

)
(11)

is a coherent operator, and the reference state |ref〉 are the
common eigenvector of the Cartan generators H1 and H2,
i.e. the Fock state | n1, n2〉. After a lengthy calculation,
we obtain

W †
H1

(ξ)D†(γ)HD(γ)WH1(ξ) = ΩH1H1 +ΩH2H2, (12)

ΩH1 = z1 cosh 2r + (x4 − x3) sin θ sinh 2r

+
√

2x1 cos θ sinh 2r, (13)

ΩH2 = z2(1 + 2 sin2 θ sinh2 r)

+ (x4 + x3) sin θ sinh 2r +
√

2x2 sin 2θ sinh2 r,
(14)

with the constraint equations

φ = ϕx2 = (ϕx3 − ϕx4)/2, (15)

ψ = ϕx1 = (ϕx3 + ϕx4)/2, (16)

x3 cosh 2r − x4(2 sin2 θ sinh2 r + 1) = 0, (17)
√

2z1 cos θ sinh 2r +
√

2(x4 − x3) sin 2θ sinh2 r

+ 2x1(coth2 r − cos 2θ sinh2 r) = 0, (18)
√

2z2 sin 2θ sinh2 r +
√

2(x3 + x4) cos θ sinh 2r

+ 2x2(cosh2 r + cos2 θ sinh2 r) = 0, (19)

(z2 − z1) sin θ sinh 2r + 2x3(cosh2 r + sin2 θ sinh2 r)

+ 2x4 cos2 θ sinh2 r −√
2x1 sin 2θ sinh2 r

+
√

2x2 cos θ sinh 2r = 0, (20)

and

c1 cosh r − c∗1e
−i(φ+ψ) sin θ sinh r + c∗2e

−iψ cos θ sinh r = 0,
(21)

c2 cosh r + c∗2e
i(φ−ψ) sin θ sinh r + c∗1e

−iψ cos θ sinh r = 0,
(22)
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in which

c1 = γ1z1 + γ∗1x3 + γ∗2x1 + γ2x2, (23)

c2 = γ2z2 + γ∗2x4 + γ∗1x1 + γ1x2. (24)

Applying both sides of equation (12) on reference states
equation (10), we get

HD(γ)W (ξ)H1 |n1, n2〉 =
(
Ω1n1 +Ω2n2 +

1
2
ΩH1

)
D(γ)W (ξ)H1 |n1, n2〉, (25)

Ω1 =
ΩH1 +ΩH2

2
, Ω2 =

ΩH1 −ΩH2

2
. (26)

Now we have got the eigen-equations of Hamiltonian (4).
Eigenstates D(γ)W (ξ)E |n1, n2〉 can be called extended
su(1, 1) squeezed number states. This kind of eigenstate
can also be considered as a deformation of the free two-
mode harmonic oscillators’ eigenstate |n1, n2〉 due to the
coupling of the two modes with modified frequencyΩ1, Ω2.

Equations (15–22) give constraints on the parameters.
Itis shown that for this type of analytical solution, if coher-
ent parameters γ1, γ2 are chosen to be zero, four among
the eight dynamical real parameters s, u, u′, v, wi, ui
(i = 1, 2) in the original Hamiltonian (2) can be freely
chosen.

The operator W (ξ) can take another form

WH2(ξ) = exp
{
reiψ

[
cosh θei(φ−ψ)a1a

†
2

− sinh θ
(
eiφa†2

2
+ e−iφa†1

2
) ]

− h.c.
}
. (27)

It can be called an extended su(2) squeezing operator.
Here we use the term “extended su(2) squeezing opera-
tor” in the sense that “extended su(2)” is used to de-
scribe “squeezing operator”. Please note this extended
su(2) squeezing operator can not be reduced to the su(2)
case, and there does not exist a su(2) squeeze effect in fact.
The new two-mode squeezing transformation it provides
are as follows

b1H2 = W †
H2

(ξ)a1W (ξ)H2

= a1 cos r − e−iφ
[
cosh θa2 + e−iψ sinh θa†1

]
sin r,

(28)

b2H2 = W †
H2

(ξ)a2W (ξ)H2

= a2 cos r + eiφ
[
cosh θa1 − e−iψ sinh θa†2

]
sin r.

(29)

Similar to the WH1(ξ) case, we have

W †
H2

(ξ)D†(γ)HD(γ)WH2 (ξ) = Ω′
H1
H1 +Ω′

H2
H2, (30)

Ω′
H1

= z(cos2 r + cosh 2θ sin2 r)−(x3 + x4) sin 2r sinh θ

+
√

2x1 sinh 2θ sin2 r, (31)

Ω′
H2

= z cos 2r + (x3 − x4) sin 2r sinh θ

+
√

2x2 sin 2r cosh θ, (32)

with the constraint equations

z1 = z2 = z, (33)
φ = ϕx2 = (ϕx4 − ϕx3)/2, (34)

− ψ = ϕx1 = (ϕx3 + ϕx4)/2, (35)

(x3 − x4) cos 2r +
√

2x1 sin 2r cosh θ = 0, (36)

(x3 + x4)(cos2 r + cosh 2θ sin2 r)

+
√

2x2 sinh 2θ sin2 r = 0, (37)
√

2s sin 2θ sin2 r +
√

2(x4 − x3) sin 2r cosh θ

+ 2x1(cos2 r − cosh 2θ sinh2 r) = 0, (38)
√

2s sin 2r cosh θ +
√

2(x3 − x4) sinh 2θ sin2 r

+ 2x2(cos2 r − cosh 2θ sin2 r) = 0, (39)

and

c1 cos r − c∗1e
i(φ+ψ) sinh θ sin r + c∗2e

iφ cosh θ sin r = 0,
(40)

c2 cos r − c∗2e
i(ψ−φ) sinh θ sin r − c∗1e

−iφ cosh θ sin r = 0.
(41)

The eigen-equation is

HD(γ)WH2 (ξ)|n1, n2〉 =
(
Ω′

1n1 +Ω′
2n2 +

1
2
Ω′
H1

)
D(γ)WH2(ξ)|n1, n2〉, (42)

Ω′
1 =

Ω′
H1

+Ω′
H2

2
, Ω′

2 =
Ω′
H1

−Ω′
H2

2
. (43)

So far we have got another form of energy eigenstate
and eigenvalue of generalized two-mode harmonic oscil-
lators. The eigenstates D(γ)WH2 (ξ)|n1, n2〉 can be called
extended su(2) squeezed number states.

One can see that energy eigenvalues of the extended
su(1, 1), su(2) squeezed number states are irrelevant to
the arguments ψ and φ, which are determined by the
arguments of the complex parameters in the Hamilto-
nian (2) inferring from equations (15, 16) and (34, 35).
This fact signifies that, if the modulus of all the corre-
sponding complex parameters are equivalent, the different
specific Hamiltonians possess the same energy spectrum.

3 Some statistical properties

In this section, we discuss the statistical properties of gen-
eralized two-mode harmonic oscillators. As an example,
we consider the eigenstates of extended su(1, 1) squeezed
number states. In the states D(γ)WH1 (ξ) |n1, n2〉, 〈xi〉 =
〈pi〉 = 0, the uncertainty relations read

∆pi∆xi =
1
2

{[
(n+ 1) cosh 2r + (ni − nj)(1 + 2 sin2 θ sinh2 r)

]2

− [(2ni + 1) cos(ψ − φ) sin θ sinh 2r]2
} 1

2
. (44)
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For the su(1, 1)⊕ su(1, 1) state (θ = ±π/2), the minima of
∆pi∆xi are ni + 1/2, and the minimum-uncertainty state
corresponds to ni = 0, ψ = φ; for the su(1, 1) entan-
gled states (θ = 0), ∆pi∆xi = (1/2) cosh2r+ ni cosh2 r+
nj sinh2 r, the minimum-uncertainty state corresponds to
n1 = n2 = 0, r → 0.

It is also of importance to investigate the quantum ef-
fects of this system. Now we discuss the photon statistics.
The mean particle numbers are given by

〈N〉 =
〈
a†1a1 + a†2a2

〉
= (n+ 1) cosh 2r − 1, (45)

〈Ni〉 =
〈
a†iai

〉
=

1
2
[(n+ 1) cosh2r

+ (1 + 2 sin2 θ sinh2 r)(ni − nj) − 1]. (46)

It is shown here that the total particle numbers in the
eigenstates correspond to squeezing the numbers in the
reference states by a factor cosh 2r (≥ 1). For the extended
su(2) case, the multiplier is cos2 r (≤ 1). It is in this sense
that these eigenstates are called squeezed number states.

The second-order statistical correlation functions g(2)
1,2,

g
(2)
12 and the Mandel Q parameters [8] can also

be readily obtained. For the squeezed coherent state
D(γ)W (ξ)H1 |0, 0〉, these statistical parameters are

g
(2)
1,2 =

〈
a†1,2

2
a1,2

2
〉

〈
a†1,2a1,2

〉2 = 2 + sin θ coth2 r, (47)

g
(2)
12 =

〈N1N2〉
〈N1〉〈N2〉 = 1 + 2 cos θ coth2 r, (48)

Q1,2 =

〈
(∆N1,2)2

〉

〈N1,2〉 − 1 = sinh2 r + sin θ cosh2 r. (49)

Equation (49) illustrates that in state D(γ)W (ξ)H1 |0, 0〉,
each of the three statistics, sub-Poissonian (Qi > 0), Pois-
sonian (Qi = 0), super-Poissonian (−1 ≤ Qi < 0, nonclas-
sical effect) can exist in both of the two modes, depending
on the values of the parameters r and θ.

For the systems consisting of two modes, there exists
the Cauchy-Schwartz inequality (CSI) [9]. If these inequal-
ities are violated, correlation between the two modes is
refereed to as nonclassical. This property can be char-

acterized by a parameter I =
√
g
(2)
1 g

(2)
2 /g

(2)
12 − 1, which

should be negative if these inequalities are violated. In
state |ξ〉cE , it reads

I =
1 + (sin θ − 2 cos θ) coth2 r

1 + 2 cos θ coth2 r
. (50)

It can be found that larger squeeze parameter r leads to
smaller possibility of the violation of CIS, i.e., the achieve-
ment of nonclassical correlation. This is not surprising
since larger squeeze parameter r corresponds to a larger
particle number, approaching classical case.

4 The nonadiabatic Berry’s phase

The nonadiabatic Berry’s phase [10] of a coupled two-
mode harmonic oscillator has not been well investigated
compared with the single mode case [11]. In this section,
utilizing our previous results, we study this problem for a
system undergoing a cyclic evolution with a cranked time-
dependent Hamiltonian [12].

The Hamiltonian (4) can be written as

H =
∑

i

ziHi +
∑

α

xαEα (51)

and can also be expressed in terms of the extended su(1, 1)
unitary transformation

H = D(γ)WH1 (ξ)
∑

i

ΩHiHiW
†
H1

(ξ)D†(γ) (52)

with the corresponding constraint equations. Cranked
through a periodic unitary transformation, the Hamilto-
nian of the system becomes time dependent,

H(t) = exp(−im · Hωt)H exp(im ·Hωt)
=

∑

i

ziHi +
∑

α

xα exp(−im · αt)Eα (53)

with m · α=
∑

imiαi being integers.
The equation of motion for the cranked system is

i
∂ψ(t)
∂t

= H(t)ψ(t). (54)

We take a unitary transformation,

ψ(t) = exp(−im ·Hωt)η(t). (55)

Equation of motion for η(t) is

i
∂η(t)
∂t

= H(ω)η(t). (56)

Here operator H(ω) is defined by

H(ω) =
∑

i

ziHi +
∑

α

xαEα (57)

with zi = zi − ωmi, and can be rewritten as

H(ω) = D(γ)WH1(ξ)
∑

i

ΩHiHiW
†
H1

(ξ)D†(γ) (58)

with xα, zi, ξ, ΩHi , γ satisfying the same constraint equa-
tions as those for xα, zi, ξ, ΩHi , γ.

Consider the case that initial state is the eigenstate
of H(ω), i.e. D(γ)WH1 (ξ)|n1, n2〉. We study the evolution
of the system in one period T = 2π/ω, and obtain the
dynamical phase

φdn1n2
=

∫ T

0

〈ψn1n2(t)|H(t)|ψn1n2(t)〉dt
= En1n2T + 2πm · 〈H〉 (59)
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together with the Berry’s phase

φBn1n2
= 2πm · (〈H〉 − n), (60)

where n = {n1, n2},

En1,n2 =
∑

i

niΩi +
1
2
ΩH1 , (61)

and 〈H〉 is defined as

〈H〉 = 〈n2, n1|W †
H1

(ξ)D†(γ)HD(γ)WH1(ξ)|n1, n2〉 (62)

with the components reading

〈H1〉 =
1
2

cosh 2r(n+ 1), (63)

〈H2〉 =
1
2
(1 + 2 sin2 θ sinh2 r)(n2 − n1). (64)

For the extended su(2) case, we have

〈H ′
1〉 =

1
2
(cos2 r + cosh 2θ sin2 r)(n+ 1), (65)

〈H ′
2〉 =

1
2

cos2 r(n2 − n1). (66)

This shows that for the generalized two-mode harmonic
oscillator with cranked time-dependent Hamiltonian, the
nondiabatic Berry’s phase is given in terms of the expec-
tation values of the Cartan operators along the cranking
direction and depends on the geometry of the group space
where the vectors m and n reside, the mean values of the
particle numbers, and the cranking rate ω.

5 Conclusion

In this paper, we study the generalized two-mode har-
monic oscillators model within so(3, 2) framework analyt-
ically and make a generalization of previous results. Two
types of energy eigenstates expressed as extended su(1, 1)
and su(2) squeezed number states are given respectively.
These eigenstates belong to displacement-Fock-states and
take the squeezed coherent states as special cases. They
can be regarded as deformations of the free two-mode har-
monic oscillators’ eigenstates, i.e. the Fock states |n1, n2〉
due to the coupling of the two modes with modified fre-
quency. We also give some quantum optics properties of
these states. It is found that both the energy eigenval-
ues and the photon statistics are irrelevant to the argu-
ments of the complex parameters in the second-quantized
Hamiltonian, i.e. there exists a cluster of specific Hamilto-
nians with the same energy spectrum and the same pho-
ton statistics. The solutions of extend su(2) and su(1, 1)
squeezed number states rely on a suitable choice of the dy-
namic parameters in the general Hamiltonian. Therefore,

the Hamiltonian can reduce to many specific cases corre-
sponding to different physical systems with analytical so-
lutions, some of which have been solved separately in pre-
vious works [4]. We have also obtained the nonadiabatic
Berry’s phase for a class of time-dependent two-mode har-
monic oscillators under cranking framework, which is re-
vealed to be related to the cranking frequency and the
mean values of the particle numbers. The detailed en-
tanglement properties of these systems, the more general
solutions and the time-dependent problem, we leave for
further studies.
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